Key Issues in Measuring the Velocities of Nanoparticles in Nanofluids

نویسندگان

  • Ming Qian
  • Xiao-wu Ni
  • Jian Lu
  • Zhong-hua Shen
چکیده

Our recent work [1] theoretically revealed that speckles can be formed when nanofluids containing a modest volume fraction of nanoparticles are illuminated by a monochromatic laser beam. This paper focuses on the key issues, including the experimental setup, the particle volume fraction of the nanofluid, the flow velocity of the nanofluid and the diameter of the pipe, in measuring the velocities of nanoparticles in nanofluids with laser speckle velocimetry (LSV). First an experimental setup is established according to the optical characteristics of nanoparticle and the measuring principles of particle image velocimetry (PIV) and LSV. Then a conclusion is made from the experimental results that clear speckle patterns can be formed when the particle volume fraction is between 0.0005% and 0.002% is able to form. Finally, in order to make it applicable to utilize LSV to measure the velocities of nanoparticles in nanofluids that flow in pipe, nanofluids can not flow too fast and the diameter of the pipe should not be too small.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetorheological and Volumetric Properties of Starch and Polyethylene Glycol Solutions in the Presence of NiO Nanoparticles

The effect of NiO nanoparticles on the rheological and volumetric properties of dilute solutions of starch-NaOH-H2O, PEG400-PEG2000 and PEG400-PEG6000 were investigated. Achieve this aim requires to prepare the stable nanofluids. Therefore, nanoparticles of NiO were added to these solutions and dispersed by a shaker and an ultrasonic bath for making the homogeneous nanofluids. The UV-Vis spectr...

متن کامل

Providing an Analytical Model in Determining Nanofluids

The influence of temperature, mean nanoparticle size and the nanoparticle concentration on the dynamic viscosities of nanofluids are investigated in an analytical method followed by introduction of modified equations for calculating the nanofluids’ viscosities. A new correlation is developed for effective viscosity based on the previous model where the Brownian movement of the nanoparticles is co...

متن کامل

Preparation and properties of copper-oil-based nanofluids

In this study, the lipophilic Cu nanoparticles were synthesized by surface modification method to improve their dispersion stability in hydrophobic organic media. The oil-based nanofluids were prepared with the lipophilic Cu nanoparticles. The transport properties, viscosity, and thermal conductivity of the nanofluids have been measured. The viscosities and thermal conductivities of the nanoflu...

متن کامل

Experimental study of the results of adding alumina nanoparticles on viscosity and thermal conductivity of water and ethanol nanofluids

In recent decades, the use of nanofluids has attracted much attention due to its application in various fields such as medical and industries like oil and gas. The combination of nanoparticles with base fluids and its type can produce different results depending on the characteristics of the nanoparticles, one of which is the effect of changes in the viscosity and thermal conductivity of the na...

متن کامل

A Study of Tribological Properties of Water-Based Ceria Nanofluids

This paper presents an investigation on the potential tribological properties of the waterbased cerium dioxide nanofluids. The nanofluids with different nanoparticle concentrations were prepared in a materials laboratory. A stable dispersion of nanoparticles in the fluids was achieved with an appropriate percentage of surfactant sorbitan monostearate. The stability of particle dispersion was st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008